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I. INTRODUCTION

This third semi-annual status report on dynamics and control of

escape and rescue from a tumbling spacecraft presents results and

expectations based on 18 months of effort. Tasks outlined in the

last progress report have been continued and bail-out analyses initi-

ated. Accomplishments attained during the period from 1 June 1972

to 30 November 1972 are summarized in Section II and detailed dis-

cussions of appropriate topics appear in the appendices. Tasks to be

carried out during the next six-month period are outlined in Section

III.

Since the current grant will expire on 31 May 1973 and a great

deal of related work remains to be done, a tentative statement of

work for a renewal grant is included in Section IV. Results to date

have been rewarding and have satisfied the original objectives of

this project. Each new result has led to other technical questions

of interest. It is proposed that both continued and new areas be

studied in this follow-on grant.

Communication and dissemination of results is considered a pri-

mary part of university research. Thus, .a summary of work to date

was presented at the Fifth International Space Rescue Symposium, held

at the 23rd Congress of the International Astronautical Federation,

8-13 October 1972, in Vienna, Austria. This paper, entitled,

"Despinning and Detumbling Satellites in Rescue Operations," will

appear in the proceedings of the symposium and is included here as
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Appendix A. Substantial interest was shown in this paper by the

attendees and other papers presented will be helpful to continue

work on this grant.

The personnel situation on this project is unchanged except for

the addition of one doctoral candidate who will be developing bail-out

analyses. Two master's students and one doctoral candidate should

be completing their work shortly. Each will write a thesis and

appropriate publications.

II. PROGRESS TO DATE

Basic task assignments presented in the last progress report

(June 1972) have not changed. The status of each topic is briefly

discussed below.

Preliminary design of unmanned module for automatic dock and

detumble (MADD) was previously presented and appears in Appendix A.

Further analyses have been carried out. These include synthesis of

a continuously throttable position control system and an initial

design of an attitude control system. All propulsion units are

assumed continuously throttable since the maneuvering requirements

for this type of mission are extreme. A separate Astronautics Research

Report will contain these analyses and simulations together with

associated optimal detumble thrusting profiles. These profiles were

based on constraining the magnitude of applied torque, and results

indicate minimum time detumbling is obtained by always torquing along

the negative angular momentum direction.
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A movable mass control system to convert tumbling motion of a

spacecraft into simple spin is being investigated. The equations of

motion of a rigid spacecraft with attached control mass have been

formulated. It is shown that a movable mass control system may increase

the system energy to its maximum state,i.e., spin about the axis of

minimum moment of inertia. It may also decrease the system energy to

its minimum state, in which case spin would be about the axis of

maximum inertia. The control system was designed for the latter case

due to associated inherent stability and low spin rate. A control law

relating control mass motions to vehicle motions was selected based

on Lyapunov stability theory. For a selected spacecraft and realistic

initial conditions, it is shown that the movable mass control system

is capable of decreasing the kinetic energy of the system and establish-

ing a simple spin state about the axis of maximum inertia within one

hour. While this time may vary according to control system constraints,

such as mass displacement amplitude or power, the feasibility of this

system has been demonstrated. A comprehensive analysis and discussion

of this control concept is included as Appendix B.

In addition to demonstrating feasibility of a moving mass system,

optimization techniques are being employed to generate displacement

profiles for the general problem of a tumbling asymmetrical body.

Such techniques may permit rapid evaluation of these time histories

for a large class of vehicle configurations. Methods are currently

being refined to obtain solutions compatible with spacecraft constraints,

A complete discussion of optimal control considerations appears in

Appendix C.
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Effects of long, flexible beams and solar arrays on the motion

of a torque free, tumbling spacecraft are being investigated. Equations

of motion are discussed for two asymmetrical vehicles with flexible

beams and one spacecraft with two flexible solar arrays. Energy

dissipation characteristics of the flexible appendages are investigated

using the complex notation for structural damping. An assumed mode

approach is used to describe the elastic deformations of these appendages.

Initial conditions are such that only fundamental modes of vibration

are considered. A comprehensive description of this treatment is

offered in Appendix D.

A review of proposed "bail-out" procedures has been completed.

Evaluation of these methods have determined those characteristics

which allow reasonable safety and reliability. The departure angular

motion of "bail-out" is determined by using Euler's equations for

rigid bodies. Translational velocity depends on the point of

departure with respect to the angular velocity vector. Methods of

eliminating the undesirable motion of the astronauts have been

investigated and two chosen as satisfying pertinent criteria. These

are the Two Mian Cable Despin device and the Extendable Rod Despin

device.

III. FUTURE TASKS

Efforts will continue in the areas of moving mass optimization,

flexibility effects on stabilization, and bail-out analyses. A

separate Astronautics Research Report on the MADD concept and its
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optimal detumbling capabilities will be completed during the next

reporting period. A preliminary statement of work for a renewal

grant beginning 1 June 1973 is included in the next Section.

Further work on the movable mass control system will be con-

cerned with selection of sensors and determination of power require-

ments. Control system parameters must be selected such that the motion

is within translation and power constraints, and optimal profiles are

obtained. This effort will be coupling to an investigation of despinning

methods to be used after stabilization by internal moving masses.

Flexibility analyses and simulations will be completed to the

extent applicable to the current project objectives. The

associated computer programs will be useful for estimating effects

on the modular space station configuration. Devices for increasing

dissipation rates through flexibility will also be suggested.

Simulations of bail-out dynamics will be performed through the

use of a digital computer. These will aid in establishing procedures

for leaving a tumbling vehicle such that a rescue craft can easily

retrieve the crew. Optimum hatch locations and bail out timing should

result.

IV. RENEWAL STATEMENT OF 1WORK

Activities on this grant have been confined to the analysis of

tumbling, active detumbling technqiues, associated conceptual hardware,

and operational aspects. It is proposed that current topics be con-

tinued and new areas be studied in a two-year renewal grant, as outlined

below:
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1. MADD Control Synthesis

Continuation of work to develop automatic control logic associated

with tracking and docking during tumble. This will include simulations

and animations of automated docking and detumble sequences.

2. Energy Dissipation Modeling

Continuation of work on dissipation modeling, including effects

of fuel slosh and dampers. Work to date has been limited to flexibility

effects.

3. Rescue Aids in Future Manned Spacecraft

Continued work on built-in devices to stabilize and aid in rescue

operations will be performed. These include passive energy dissipators

in addition to passive sensors for use by a rescue vehicle.

4. Escape Hlatch and Bail-Out Analyses

Initial work on optimum placement of escape hatches has been done,

but results will require further efforts. Simulations of various

situations will be included to determine bail out dynamics and to

evaluate individual detumble devices previously proposed.

5. Feasibility of Stick-On Rockets

A feasibility study of the stick-on rockets proposed by NAR is

essential before further evaluation can be made. This would involve

simulations of dynamics resulting from firing these rockets. during

tumble. The exact attachment points of these devices are critical

to successful stabilization, In addition, the impulse imparted is

also important.
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6. Liquid Jet Experiments

Feasibility of using liquid jets for detumbling depends on a

determination of jet properties in vacuum. Such properties are not

known for conditions of interest in this situation. Facilities exist

at Penn State for this kind of work and results can be obtained at a

minimum of expenditure.

The principal investigator will participate on 1/4 time basis

with other faculty contributing as needed. Three graduate assistants

on 1/2 time schedules can handle the outlined tasks.
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APPENDIX A

DESPINNING AND DETIMBLING SATELLITES IN RESCUE OPER\TIONS

by

Marshall H. Kaplan
Associate Professor of Aerospace Engineering

The Pennsylvania State University
University Park, Pennsylvania, U.S.A.

FIFTH SPACE RESCUE SYMPOSIUM
ORGANIZED BY THE SPACE RESCUE STUDIES COMIITTEE

INTEr1nATIOONAL ACADEMIY OF ASTRONAUTICS

23rd Congress of the
Presented at the
International Astronautical Federation
8-13 October 1972
Vienna, Austria

This work is supported by National Aeronautics and Space Administration
Grant NGR 39-009-210.
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I. INTRODUCTION

In the operation of future manned space vehicles there is always

a finite probability that an accident will occur which results in

uncontrolled tumbling of a spacecraft. The process of detumbling such

a vehicle may represent a major part of the rescue operation if crew-

men cannot evacuate while tumbling. Hlard docking by a manned rescue

craft is not possible because of complex maneuvers which would probably

require excessive accelerations and fuel usage. In addition, the

rescue crew would be exposed to an extremely hazardous environment

since the tumbling vehicle may be larger than the rescue craft.

Therefore, elimination of tumbling motion presents a very difficult

problem which must be resolved to fulfill a complete space rescue

capability.

The most general type of passive attitude motion is referred to

as "tumbling." All three orthogonal components of angular velocity

may be large, and there is no preferred axis of rotation. Since no

spacecraft is absolutely rigid, tumbling motion will tend toward

steady spin due to energy dissipation. However, large bodies such as

manned space bases have relatively low dissipation rates and may

require many days or weeks to passively stabilize at a constant spin

rate about a single axis. If this state were reached, despinning

is somewhat easier than detumbling. This paper discusses the opera-

tional aspects of detumrbling or despinning a large passive vehicle

during a rescue mission. Techniques and devices for carrying out

these operations are also presented. Some specific examples are cited

which represent realistic estimates of future rescue situations. Two

philosophies are employed to consider promising methods of implement-

ing attitude control; torque application from outside and built-in

autonomous devices. The first category includes the use of fluid

jets from a shuttle orbiter and a small automated thruster package

to track and dock with the tumbling craft. Internal devices include

self-contained, acceleration-activated mechanisms which may vary the
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moments of inertia or apply thrust with time in order to stabilize

motion to steady spin or eliminate all angular momentum.

II. THE NATURE OF TUMBLING

Angular momentum states have been classified according to motion

and missions in which such states are likely to occur. Simple spin

is angular motion about a single body axis and is usually associated

wvith passive atLitude scabiizaion aild Ute steady state of initially

perturbed or tumbling bodies. Tumbling occurs immediately after a

significant attitude perturbation, but eventually decays into simple

spin. The nature of general torque-free tumbling motion of rigid

bodies has been well established and may be described analytically or

geometrically. For an unsymmnetrical body the equations of motion are

non-linear and cannot be solved without difficulty. A geometrical

interpretation has been formulated by Poinsot.2 The "Poinsot ellipsoid" ED

illustrated in Figure 1 represents the locus of all possible values 1'

of0 alaz :aloci:y of thle bodi;y * saiLs<y the coiSltant kinlet'ic

energy condition., This imaginary ellipsoid is fixed to the body and

moves with it, as shown. Attitude motion can then be described as the

Poinsot ellipsoid rolling without slip on an inertially fixed plane

with its center at a fixed distance from this plane. If the body is

syrmlmetric, the geometric interpretation is simpler and is illustrated

in Figure 2. A "body cone" whose apex is at the center of mass and

is fixed to the body rolls on an inertially fixed "space cone" whose

axis coincides with the angular momentum vector. The common cone

element coincides with the angular velocity vector.

Tunbling is the inmmediate result of a significant attitude per-

turbation to an uncontrolled vehicle with little or no initial spin.

This situation is coupled with continuous angular motion of all three

principal body axes, i.e., no inertially oriented axis exists. Crew-

men trapped inside such a vehicle could not easily escape and may not

even be able to move about due to the changing nature and magnitudes
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of accelerations. Thlis kind of attitude motion makes rescue very

difficult. In general, elimination of angular motion of a large body

is a complicated process, because it must be done either from a non-

tumbling frame outside the body or by a possibly massive internal

device which may only stabilize the motion to steady spin.

III. EXA24PLES OF TUMBLING SITUATIONS

In order to determine the requirements for a device or concept

to detumble a large spacecraft some assumptions must be adopted about

the causes of tumbling and calculations made to determine resulting

maximum rates of tumble. An analysis of realistically determined

situations was made with selected spacecraft which are thought to

represent future mission hardware. Primary expected causes of tunmbling

associated with loss of control are vehicle-vehicle collisions,

escaping atmosphere, pressure vessel rupture, runaway attitude thruster,

and hard-over girmbal during a main engine firing.

Four configurations were selected based on a recent North

American Roclkwell study. These are the modular space station, small

space vehicle, Mark II orbiter, and generation 1 orbiter. Configura-

tions are shown in Figure 3. Mass and moments of inertia were cal-

culated for each vehicle and are listed in Table 1. Collisions

between all combinations of these vehicles were considered, except

Mark II-generation 1 orbiter encounters. Such mishaps were assumed

to occur during docking operations with a relative velocity of

1.5m/sec with misalignment of 4 deg in angle and 0.61m in displacement

in addition to an angular vehicle rotation rate of 0.1 deg/sec.

Impact parameter values were assumed and energy methods of analysis

were used to determine resulting tumbling rates. The escaping

atmosphere situation was assumed for the modular space station and

small space vehicle. Pressure wall perforation could result from

meteorite penetration, internal explosion, etc. The effect on

attitude is similar to that of a reaction jet as the inside atmos-

phere escapes into space. Worst cases were assumed with respect to
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puncture location and thrust produced. Escape of fluids from tanks

into space will have similar results to those of an escaping atmos-

phere. A single tank was assumed ruptured for each configuration

studied. Worst case conditions prevailed, e.g., contents escaped in

one direction producing thrust with a large moment arm about the

center of mass.

Since only the two orbiter configurations have steerable main

rockets, the hard over gimbal situation applied to them exclusively.

Two thrusters on each vehicle were assumed fixed at maximum gimbal

angle and fired for 15 sec. The final tumble-producing situation is

concerned with a malfunctioning attitude thruster which is assumed to

thrust for one minute.

Table 1 Mass Properties of Configurations Considered

Modular Small Mark II Generation 1
Space Space Orbiter Orbiter
Station Vehicle

Mass (Kg) 100,000 11,400 138,000 81,000

Moments of Inertia I 0.636x10 0.298x10 3.4x10 0.993x10

(Kg-m
2
) XX

Iyy 0.664x10O 1.34x10 24.8xlO 8.14x10

I 0.515x107 1.34x105 28.3x10 8.50x106

Products of Inertia IL. 0.19x106 0 -1.22x10 0

(Kg-m2 ) ,, 
IXZ 0.785x10 0 3.59x10 0

IyZ 0.176x104 0 0.271x10 0

..... _ .....



15

Results of worst case situations are summarized in Table 2. It

must be stressed that the values of angular rates appearing in this

Table represent only the initial motion at the end of application of

perturbing torque. Since the X, Y, and Z axes do not generally coin-

cide with the principal body axes (motion about the maximum and mini-

mum principal akxes is stable for a rigid body) these spin modes will

become tumbling modes within a few revolutions of the vehicle. Some

of the results are given as ranges of angular rates because of parame-

ter uncertainties in the analysis. In general, one could conclude

that angular rates could be expected up to about 9.0 RPM for the large

vehicles and up to about 14.7 RPM for the small space vehicle. The

escaping atmosphere situation for this last vehicle is considered a

catastrophic one, because a spin rate of 52 RPM would probably result

in massive structural failure. Therefore, rescue from this spacecraft

would be neither possible nor necessary. A few cases could not be

analyzed due to a lack of data on configuration dimensions and layout

dztails. Hc::cver, all cases in w;hich rescue is possible appear to be

limited to initial angular rates of less than 10 RPM or 60 deg/sec for

large vehicles and less than 15 RPM or 90 deg/sec for the small

vehicle.

IV. RESCUE OPERATIONS

In general orbital rescue missions may be divided into three

phases: rescue alert and rendezvous with the disabled vehicle,

rescue operations proper, and return of the rescue vehicle. The

second phase is of primary concern here, since a major part of this

phase involves deturbling a large, mranned vehicle before evacuation

and repairs can talke place. The sequence of rescue operations depends

on the type of control to be used. T;,o techniques are being con-

sidered: application of controlling torques from outside and stabi-

lization by autonomous internal devices.

External application of torque can be done by either a programmed

fluid jet or thruster package which maneuvers and docks with the
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disabled vehicle if tumble rates are not too high. Operationally the

rescue craft "parks" at an optimal position with respect to the tumbling

vehicle. If a fluid jet is used the jet must impinge the structure

such that angular momentum is decreased. This requires careful aim-

ing and variation of jet intensity with time. Improper application

could increase tumbling and cause structural damage. If an automated

detumbling package is used it must maneuver to an anticipated ren-

dezvous point on the disabled vehicle and then track the intended

docking position while maneuvering in to make a "hard-dock." After

this is accomplished, thrusters on this device apply a sequence of

torques to the vehicle. This may be done optimally to use a minimum

of fuel or time to detumble the craft.

Before application of torque or initiation of maneuvering to

dock, it is necessary to determine the components of tumbling and

angular momentum. Since the disabled vehicle is passive (assurming

no autonomous devices were placed in this spacecraft for the specific

purpose of measuring angular rates and/or stabiizing the vehicle)

this determination must be done from the rescue craft. Such measure-

ments are difficult to makie, because angular components vary con-

tinuously with time in the general case. Three components of angular

velocity are required simultaneous to obtain the direction and mag-

nitude of angular momientum if the vehicle moments of inertia are

known. Otherwise, extensive measurements are required. This latter

situation is very likely to be the case if an explosion or loss of

propellant has taken place. Techniques which employ visual observa-

tions, radar scanning, and laser reflectors in conjunction with

onboard computers are likely candidates for these measurements.

Special passive reflectors may be required on the disabled vehicle,

but these are smal l, simple devices which can be mounted before

launching all manned vehicles.

17
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V. AUTO1ATED EXTERNAL DETUIBLING DEVICES

Since the expected tumbling rates for large vehicles are relatively

low, a small maneuverable thruster package deployed from the rescue

craft could rendezvous and dock with the disabled vehicle while tum-

bling. A Module for Auto'natic Dock and Detumble (MADD) could perform

an orbital transfer from the shuttle in order to track and dock at a

preselected point on the distressed craft. Once docked MADD could

apply torques by firing its thrusters to deturble the passive vehicle.

This could be done in a minimum time or fuel sequence.

Design of a HLADD type spacecraft is influenced by mission objec-

tives and systems constraints. It must maneuver to, dock with, and

deturmble a large vehicle with limited fuel, and it must be adaptable

to varying situations. Size is constrained by cargo bay dimensions

of the rescue craft and to some extent geometry of the disabled

vehicle. A preliminary configuration for iADD is shown in Figure 4.

This version is designed to use an existing docking port on the dis-

abled vehicle, although, there are some situations in which this is

not possible or desirable. Other types of attachment devices may be

adapted for those cases. All subsystems are contained within the

octagonal structure and include control electronics, attitude control

gyros, conmmand and telemetry, propulsion, power, and various sensors.-

The control system has three basic operating modes: transfer,

dock, and detumble. During transfer from the rescue craft this

system maintains attitude and reorients MADDD just before entering

the docking mode in which tumble tracking and attachment take place.

As soon as hard docking is accomplished the detumble mode is initiated.

During this last phase gyro controllers are locked and rate gyros are

used for attitude reference. A single propulsion systema will satisfy

the requirements for transfer, detumlble, and momentum dumping. Thrust

profiles during tracking and detumbling phases are computed by an

on-board cormputer based on mneasurements from sensors and those taken

immediately upon completion of docking. Optimal sequences are
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generated in order to detumble in minimum time with limited thrust

when time is a critical factor.

The operational procedure for the use of NADD consists of deploy-

ing the module, transfer to a rendezvous point, tracking a docking

port, hard docking, and detumbling. Before initiating this sequence,

the rescue craft crew must determine the angular momentum and physical

state of the disabled vehicle. An optimum parking position is

selected for the rescue craft based on visual observation advantage,

propellant requirements for maintaining this position, and possible

transfer paths for 1!ADWD. Figure 5 shows a situation requiring a mini-

mum propellant requirement for the rescue craft. Both vehicles share

the same orbit but remain separated along the flight path. Once a

stand-off situation is established, 1,ADD is deployed from the cargo

bay and the transfer phase begins. A general transfer profile is

illustrated in Figure 6. Direct observation of MADD is possible from

the rescue craft during the transfer phase. However, during tracking

and docking radio and visual contact.may be lost intermittently due

to occultation. The rendezvous point can be selected such that the

velocity of ILDD at this point will coincide with the velocity of the

disabled vehicle reference point. This will eliminate the need for

a terminal maneuver by TlLiDD before the tracking phase begins. Tile

rendezvous point should typically be about 3 meters from the docking

port. L4ADD thrusters begin firing to maintain and then reduce its

distance to this port. Passive docking aids may be required around

the port for sensing relative position, orientation, and velocity.

'This permits proper alignment during closure and docking. The process

is continued until capture latches are secured. After detumbling

crew evacuation takes place.

VI. AUTONONOUS INTERNAJl CONTROL MECIHANISMS

Although detumbling by external means is a more positive technique

and requires little of the disabled vehicle, it may be desirable to

have internal devices which could at least lessen the tumbling motion
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Figure 4. Preliminary Design for MIADD



21

before a rescue craft arrives. Such devices would become effective

upon loss of control and some could be relatively simple and light-

weight.

Devices for controlling tumbling may be active or passive.

Active devices use sensing instruments of some sort to command con-

trol torques. These systems require control logic and power. Typical

mechanisms of this type are mass expulsion and momentum exchange

devices. Another potential active control mechanism is a moveable

mass system. By varying .the position of a control mass properly,

(i.e., changing the moments of inertia of the spacecraft) tumbling

may be transformed into spin. Typical passive devices use the

"wobbling" motion of the vehicle to activate simple mechanical or

fluid devices which dissipate energy and lead to a simple spin state.

Possible passive mechanisms include viscous ring and pendulum dampers.

Mass expulsion systems for use as internal detumbling devices may

be of monopropellant or bipropellant type. The monopropellant type

appears to be more desirable since bipropelant systems tend to be

heavier and more complex. The simplest means of orienting the

thrusters is to place pairs about each control axis. However, due

to weight limitations this may not be possible, in which case it

would be necessary to determine the number of thrusters needed and

the best placement of these thrusters. Two drawbacks of mass expulsion

devices are that they are massive and require an onboard power supply.

For long term storage they may have questionable reliability.

Momentum-exchange devices have found many applications in the

attitude control of satellites. The control scheme for momentum

exchange devices is to store the unwanted tumbling motions of the

spacecraft in the motions of a wheel. The moveable mass system for

control of tumbiling has been suggested for a number of applications.

The concept is based on the assumption that the components of the

spacecraft can move relative to each other. In the simplest case a

control mass would move relative to the spacecraft in such a way that
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kinetic energy decreases to a minimun at which time the spacecraft

will be in a stable spin state. Once this state has been reached the

spacecraft may be despun with another internal device or by external

techniques. A simple spin state might also greatly facilitate crew

escape.

VII. OPTIMAL DETUMBLING STRATEGY

The minimum time optimal detumbling of a distressed space vehicle

can be divided into the following categories: constraint on the mag-

nitude of the control moment vector and constraint on the magnitude

of each component of this vector. lhe general problem of detumbling

considered here is to bring all three components of angular velocity

to zero in minimum time. The first constraint category can be handled

with relative ease. The appropriate analysis was applied to an example

case. A collision between a modular space station and a Mark II

orbiter was assumed with a resulting tumble of the space station.

Principal axis angular velocity components at commencement of external

thrust application by MADD were taken as 1.150, 1.750 and -0.445 RPM

about the 1, 2 and 3 principal axes, respectively. These values

represent a good test situation for the optimization technique used.

These components were brought to zero in about 7 minutes with a con-

trol torque magnitude of 3,390 N-m. Figure 7 shows a time history

of the principal axis angular velocities during application of the

optimum control moment. Figure 8 gives a time history of the body

fixed thrusts required at point X = 3.9m, Y = 0.89m and Z = 18.3m to

give the necessary 3,390 N-m moment directed opposite to the angular

momentum vector.

The second type of constraint presents more difficulty in deter-

mining the optimum minimum time control moment sequence. In this

case, the analysis is not as easily accomplished, and the control

moment vector is not simply directed opposite to the angular momentum

vector.
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VIII. CONCLUSIONS AND RECOIF4iANDATIONS

A rescue situation involving an uncontrolled, tumbling spacecraft

is a definite possibility and one which requires special techniques and

equipment. Such cases may require the elimination of tumble before

evacuation of crewmen. The two basic approaches to the control of

tunbling are concerned with external torque application and internal

autonomous mechdiaisms. Several conclusions can be drawn from this

study. ThRese are listed below and refer to future manned spacecraft

designs:

1) Reflectors designed for tumble state determination should be

placed strategically about the outside of each vehicle.

2) Each new spacecraft design should be examined for possible

inclusion of moving mass and/or passive dissipative devices.

3) Passive sensors for bMADD docking alignment should be installed

around all docking ports.

4) Realistic tumble rates are expected to be low, permitting the

use of small thruster modules such as UADD.

5) Internal autonomous devices are desirable but cannot be

expected to completely detumble the vehicle unless they are

massive. Thus, outside torque application should be antici-

pated for future rescue missions.

Several recommendations are associated with these conclusions

and refer to new technology areas:

1) Development of MADD units should be considered in depth.

New technology will be required for at least the automatic

control system and sensors.

2) Hardware components should be developed for use in determin-

ing tumbling rates through outside observations.

3) An extensive investigation of the properties of fluid jets

into vacuum should be made to determine feasibility and

application with respect to applying detumbling torques.

4) Simple and lightweight mechanisms should be sought for use as

internal controlling elements to aid in detumbling.
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Control concepts for MkADD and new internal autonomous mechan-

isms are being investigated in the current study. New technology

needed to make appropriate decisions regarding future space rescue

capabilities is the primiary cbjective of this program.

REFERENCES FOR APPENDIX A

1. Kaplan, .I. IH., "The Problem of Docking with a Passive Orbiting

Object WMhich Possesses Angular Momentum," presented at the 22nd

Congress of the International Astronautical Federation, Brussels,

September 1971.

2. Thnoilson, 1W. T., Introduction to Space Dynamics, Wiley and Sons,

1963, pp. 113-130.

3. "Analysis of Tuwmbling Spacecraft," Final Report, Safety in

Earth Orbit Stud-, Vol. III, North American Rockwell, Report

No. SD 72-SA-0094-3, June 1972.

4. Wild, J. I4. and Schaefer, H., "Space Rescue Operations,"

presented at the 3rd_ International Symposium on Space Rescue

at the 21st Congress of the International Astronautical

Federation, Constance, Germany, October 1970.



27

APPENDIX B

MOVING MASS SCHEMES FOR TUMBLING STABILIZATION

I. INTRODUCTION

Internal autonomous control devices for detumbling a space vehicle

can be broadly classified as active or passive. Passive devices use

the "wobbling" motions of the tumbling vehicle to activate simple

mechanical or fluid devices which dissipate energy and lead to a

simple spin about the maximum moment of inertia axis. Several types

of these devices, such as the viscous ring and pendulum dampers, have

been discussed in the literature. However, these devices are most

appropriate for vehicles which have a high nominal spin rate about

one axis. Active devices utilize sensors to command control torques

to effect detumbling. Two examples of active control devices are

mass expulsion and momentum exchange control systems. Mass expulsion

systems require onboard storage of propellant and may not be reliable

on a long term basis. Some momentum exchange devices may require

continuous operation since startup would be difficult once a tumbling

situation has occurred. These devices also have a tendency for satura-

tion in large corrective maneuvers. One attractive tumbling stabiliza-

tion device is the movable mass control system. This device moves a

control mass, according to a selected control law, in the force field

created by the tumbling motions. By moving the mass properly, the

kinetic energy of the system may be increased or decreased creating
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simple spin states about the minimum or maximum axes of inertia,

respectively. This would greatly facilitate crew escape or 'final

despinning by another means.

The treatment of moving masses inside a rigid main body has been

treated descriptively by Grubin1 and Roberson. 2 Grubin developed the

equations of motion with respect to the main body center of mass while

Roberson developed them with respect to the composite center of mass

of the system. Kane and Scher suggest using the effect of a movable

mass to control a tumbling vehicle. Childs4 has designed a movable

mass control system for use in a space station which operates in an

artificial -g mode. However, this control system is designed to damp

out only small transverse tumble rates. Lorell and LangeS have developed

an automatic mass-trim system to counteract sensor-vehicle misalignments.

However, this analysis, and most reports on the subject, make the

assumption of either small transverse tumble rates which permit

linearization or assume a symmetric vehicle. These assumptions negate

their validity for the general case of an asymmetric vehicle with

arbitrary tumble rates.

It is the purpose of this report to develop the equations of

motion of an asymmetric vehicle with attached movable mass and develop

a control law which is applicable for arbitrary tumbling motions. A

control law is selected and an example case is presented to demonstrate

the feasibility of a movable mass control system to convert the

tumbling motions of a vehicle into simple spin.
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II. EQUATIONS OF MOTION

The equations of motion of a rigid spacecraft with an attached

movable mass are developed in this section. In the following analysis

d-
d v implies differentiation with respect to an inertial reference

frame and [v] implies differentiation with respect to the body fixed

reference frame.

The generalized angular momentum equation for a rigid body with

n moving masses is

M = H + S xa (1)
dt

where M is the external moment, H is the angular momentum of the system,

S is the first moment of mass of the system, all with respect to an

arbitrary reference point moving in an arbitrary manner, and I is

the inertial acceleration of the reference point. Equation (1) reduces

to the standard equation M =d H for the usual cases where the

reference point is fixed (a = 0) or is the systems center of mass

(S = 0). For the case of a rigid body with an attached mass, a more

convenient choice of reference points is the center of mass of the main

body. Mass motions can then be specified with respect to the main

body center of mass instead of the system center of mass which will

be moving with respect to the main body.

For the case considered here of a main body having one attached

movable mass with no external torques, Equation (1) reduces to

d - + x
-H +S xa = 0 (2)
dt
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The system geometry is shown in Figure 1. The angular momentum of the

main body, Hb, with respect to its principal axes is

b IW + I 2li + I223k (3)

where i, j, k are the unit vectors along the principal axes, and wl,

02 and w3 are the angular rates about these axes, respectively. Therefore,

dt Hb = [b] + W

d
dt b [Ill + W2 W3 (I3 I2)] i (4)

+ [12W2 + 1 3 (I 1 - 3)] 

+ [I30
3

+ 1I2 (I
2

I1)]+

This portion of Equation (2) corresponds to the normal Euler principal

axes equations.

The angular momentum of the point mass with respect to the main

body center of mass, H, is

-5 d
H + mr x (5)

m m about its own dt
center of mass

With the assumption of a point mass Hm about its own center of mass

is equal to zero and we may write

2_(
-· d r

t 2irx (6)dt m dt 2
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Figure 1. Main Body and Attached Mass System Geometry
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d2 
The term 2 is the acceleration of the point mass with respect to the

dt 6
main body center of mass. From Thomson

d2~
2= xx ( x r) + x r + 2 x r + r . (7)

dt2

The first term of Equation (7) is the centripital acceleration, the

second is the tangential acceleration, the third is the Coriolis

acceleration, and the last term is the acceleration of the mass

relative to the main body axes. The total angular momentum of the

system with respect to the main body of mass is

H Hb + m. (8)

The first moment of mass is given by

S=m? = m(xi + y k + zk) (9)

Note that the main body does not contribute to the term since the

reference origin is its own center of mass. The inertial acceleration

of the origin is from Figure (1),

2 2 2
d d _

a - R . R - -2r (10)2 o 2 c dt c
dt dt

Here

dt c M

where2F is the resultant of external M + m

where F is the resultant of external forces acting on the system, M

is the mass of the main body, and m is tie mass of the moving mass.
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From the definition of center of mass, we may write,.

2 2
d- m d 

dt
2

c M+ m dt

With the assumption of no external forces, Equation (10) becomes

m d2 
M + m dt

Combining Equations (6), (8), (9) and (11) into Equation (2)

yields

dtH+rx 2. mM+ d2-
d d 2 m d) 
d -~ + mr xd + mr x ( - = 

dt dt

Combining terms yields

d - mMi 
dt Hb + m + M

2
d

dt

It is useful to define the term

_ mM
P-m+M 

as the reduced mass, and

2
dt

f= ---
dt

2

as a "pseudo-force." Substituting these quantities into Equation (12)

yields

d -+

dt Hb +r x f= 0

or

dt (
dt - r x f

(11)

(12)

(13)

(14)
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From Equation (14) it is apparent that the dynamics may be thought of

as those of a rigid body being acted upon by a reaction "pseudo-moment"

of - Pr x f which is a result of mass motion.

Expanding Equation (13) yields a set of three coupled, highly

non-linear differential equations for the system dynamics in terms

of the angular rates of the main body (W1, "2' W3)
'

the principal

moments of inertia (I1, I2, I3), movable mass position (x, y, z),

velocity (x, y, z), and acceleration (x, y?, z). All of these quantities

are with respect to the body fixed principal axes (X1, X2, X3,

respectively). The equations are:

IL, 2)] cot L [ - V I At w- - W2] W 3

T P [-XY j - X± JI i (\ - E 2 )Jl 7± \ / Y y (w, - wA <)(15)

V 2_ -a[s 2- 1T3 ititi I~l )2i U- flyy ' ti 5' ( i] = 

[~- I -i ~~J3 2 X 1 -'I L¾v- X Y Os

'-t [ -',-b* - `X U[i -i- '. , " )..', ( , t _ jr ( 

-'i' 'z. ... - ',/x, -r ,x '.+ ~ - XW --- o
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[ 13, > t c ~ ] + + [UIt-I, +± (x zy - ] ~w,

t u - LX i)' - 79 Wa 4 (2 Ax t 2\/, " WJ ± ty (L2J- W 2 (

-2?,(W - 2 '1 w' - -4 Ji _ i zx i? t ';j -WV 'L'J O

Thus, for prescribed motions of the control mass the resultant motion

of the main body may be determined. The equations are valid irrespective

of the physical mechanism whereby the control mass executes its motion.

The expanded form of the "pseudo-force", f, acting on the mass

and reacted to by the main body is

, - [ 2 '9W-3 W3 -2 7' Wt) t L O - W) (L j

f2 = 2 u -t 2 X LU 3 - C L¾ - + \l Q ± o ,C 5 +l. X cJ)LoJ-/(lJ&l.<i,

f- = o. [ - ?2 Li 4 -i- 7 wy - XL'j W+ I L t X UWaJ,w, t \LLL!, W, (W - (2C

To develop the expression for the kinetic energy of the system with

respect to the composite center of the mass, consider Figure 2. The
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kinetic energy is defined as follows,

N+l d. df
i

2 i i dt dt
i=l

where the main body is considered to consist of N masses of mass mi and

the (N + 1) mass is considered to be the control mass. From Figure 2,

r. = R + P
i c i

Equation (21) then becomes

N+l N+i~1 d-)2 1 d 2 d d
(M + m) d t . (.t P _ 

2 dt c 2 i dt i) + R ( Z m
i=l 1ai=l

The first term us the kinetic energy of the composite center of mass,

the second term is the rotational kinetic energy about the composite

center of mass, and the last term is zero from the definition of the

center of mass of the system. Consider only the rotational kinetic

energy, therefore,
N+i

1 d 2
rot 2 dt 

i=l

(22)
N

1 d 2 1 m(d )2
2 il mi(dt Pi) 2 dt m

From Figure 2.

r r-
m c

and

Pi =1Ii c
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From the definition of center of mass,

m
r r.
c M+m

Substituting these relations into Equation (22) and simplifying yields

1 m md 2 1 d 
T r ot = r~
rot 2 idt i 2m+M dt

i=l

The first term is the rotational kinetic energy of the main body about

its own center of mass. The second term is the rotational kinetic

energy of a "pseudo-mass" with respect to the main body center of

mass. Therefore, the rotational kinetic energy of the system about

the composite center of mass is,

1 2 2 2 1 d -.2
Trot =(Ill + I2 2 + 

3
W
3

) + 2 dt (23)

or in expanded form,

T 1 2 2 21-(Il + I2
2

+ 130
7 )rot 2 11 22 (24)

+ + [(x + zx zw
2

+ (z + yw x)
2
]

The expression for angular momentum with respect to the composite

center of mass may be developed similarly.2 The result is

- = d -
H =I * + Pr x - r
c dt

where I is the inertia dyadic. It should be remembered that H in

Equation (8) is the angular momentum with respect to the main body

center of mass, whereas Hc is the angular momentum with respect to

the composite center of mass of the system. The equation of motion
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would be

-H o (25)
dt c

if the composite center of mass were chosen as the origin. Since

Equation (25) indicates that Hc = constant, this may be used to

determine the accuracy of a numerical solution to Equations (15) -

(17).

Since the movable mass control system is to decrease- the

kinetic energy of the spacecraft, the rate of change of the rotational

kinetic energy may be developed. If Equation (24) is differentiated

and simplified using Equations (15) - (17), the result is found to be

independent of the main vehicle properties (I1, I2, 13) and depend

only on vehicle and mass motions. The result is

-t ( 71 t (l X % Wrl'2 (x j Li ;tV If- y/J W ' t ( , 2 t & i) 'I Lwj ,3 (26)

Comparing Equation (26) with Equations (18) - (20), the following

relation is verified.

T =rot · (27)rot

This surprisingly simple relationship will be used to develop a

control law in the next section.

III. SELECTION OF CONTROL LAWS

Equations (15) - (17) determine the attitude motions of the space-

craft for specified motions of the control mass. It is the function
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of the control law to relate the motions of the control mass to

measurable vehicle parameters so that the control mass may respond

to vehicle motions in an appropriate manner to lessen tumbling. A

satisfactory control law should not be unnecessarily complicated. It

should, however, require determination of measurable vehicle parameters,

produce stable responses, and result in a final state of a simple

spin about either the maximum or minimum moment of inertia axes. In

the following analysis, the vehicle is assumed to have three distinct

moments of inertia. I1, I2, and 13 and the relationship 13 > 12 > I
1

is assigned to these quantitites.

By inspection of Equations (15) - (17), the equations of motion

for an asymmetric vehicle with attached movable mass are extremely

complicated due to their highly coupled and non-linear nature. Since

the initial tumble rates may be large about all three axes, the

equations of motion cannot be simplified by linearization. However,

several simple cases were identified and will be discussed before

considering the general case.

lhe first special case requires that the motion of the mass be

along a line parallel to and offset a distance b from the X
3
axis

and passing through the X
2

axis. Equation (15) becomes

2 2 2 2
[I1 + +(b + z )] W1 + [I3 - I2 + P(b - z )] W2 W3

(28)

2 2
+ 21izo1 + pbz(w 3 2 ) + b'z = 

Suppose the control law is chosen such that

z = c
1
. .(29)
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Substituting this into Equation (28) with the assumption, I1 >> C2 l ,

Equation (28) becomes

2 2

[II + -pb 2 2 [I2 -3 - pb
2

] (30)
+ +Ib + WbWW

1 +bc ~1 + 3 2 ) 1 pbc 2 3

Equation (30) indicates for the case where 3 > W2' Equation (29)

will result in damping of 1 to zero producing a stable spin about

the maximum moment of inertia axis. The control law given by Equation

(29) would be easy to implement, requiring measurement of only z and

W1' The mass would oscillate about its equilibrium position with

decreasing amplitudes since wl would be damped. The control mass

would return to its zero position when w1 equals zero and a flat

spin is reached. For the case of an arbitrary tumbling spacecraft,

the assumption w 3 > (2 cannot be made and Equation (29) does not

provide a satisfactory control law. However, the result may be

useful in designing a control system for a space station which has an

artificial -g mode where the spacecraft has a large rate about one

axis, say W3 , and the control system is to damp out small transverse

rates.

Since a flat spin about the maximum moment of inertia axis is

the minimum energy state of the system, it is evident that Equation

(29) produces a dissipation of energy. The second specialized case

demonstrates that a movable mass control system may increase the

energy of the system to the maximum energy state. The vehicle would,
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therefore, be in a flat spin about its minimum moment of inertia axis.

For this case the motion is to be along a line oriented parallel to

and offset by some distance (a) from the X
1

axis and passing through

the X
2

axis. For this configuration Equation (17) becomes

2 2 2 2
[I3 + (x + b )] 3 + [I2 I + I (x - b )] b 1W 2

(31)
2 2

+ 2 x xw
3

+ pb x (W2 - W1 ) - Ubx = O

Suppose the control law is now chosen to be

x = cw3. (32)

2 2
With this choice of control law and the assumption 12 >> Pc 3 2

Equation (31) becomes

(I- pbc2 3I + (e 2
. [3 [ + b2 ] 2 2 [2 I

1 +
2 ]

3 pIbc 3 (1 W2 ) w 3 W1 W3 (33)
Pbc

Equation (33) indicates that if the product (bc) is chosen such that

(be < 0) and the special case of w1 > W2' Equation (32) will result

in damping of w3 to zero and produce a flat spin about the minimum

moment of inertia axis (X1). The properties of the control law are

similar to those of Equation (29).

The two preceding examples have demonstrated that the movable

mass control system may increase or decrease the energy of the system

and produce a flat spin about either the minimum or maximum moment

of inertia axis. They also indicate that possibly the proper orienta-

tion for the direction of motion of the control mass is parallel to
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the desired final spin axis. However, since the initial tumble state

of the vehicle is not known, the necessary assumptions may not be

made for the general case of tumbling. The control laws given by

Equations (29) and (32) are, therefore, attractive but inadequate in

their simplicity. Therefore, a control law was searched for which

would result in a flat spin, irregardless of initial conditions.

It was also determined that although the control system could possibly

force a flat spin about the minimum moment of inertia axis, the control

system should produce a flat spin about the maximum moment of inertia

axis due to its inherent stability in the presence of dissipative

forces.

The development of the control law starts with the theory of

Liapunov stability. From Reference 7, the system of differential

equations produced by Equations (15) - (17) and the control law

which is selected is completely stable and approaches its

minimum state if there exists a scalar function, V(x), where x is the

state vector of the system, if

1) V(x) > 0 for all x i 0

2) V(x) < 0 for all x

3) V(x) +o as |[ x |[ +o

For physical systems, a convenient scalar function to use as a

Liapunov function (V(x)), is the rotational kinetic energy of the

system due to its inherent positive definiteness which satisfies

conditions (1) and (3). The rate of change of rotational kineticenergy
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is given by Equation (27) which is repeated here.

T r f (34)
rot

Consider the case where the control mass is restricted to move along

a line parallel to the X3 axis, and offset from this axis as shown in

Figure 3. For this case Equation (34) simplifies to

Trot = f3 '

Thus, if the control law is chosen such that

f3 = - cz (36)

Equation (35) becomes

.2
T t= - cz (37)
rot

which satisfies condition (2). Using Equations (36) and (20), the

resulting equation of motion for the mass is

+ cz - (1 2 ) z = a2 bjw - aw3W1 - b 2W (38)

This equation would decrease the kinetic energy of the system, and

the forcing function of Equation (38) would vanish when a final

spin about the X3 axis would be reached. However, due to the negative,

decaying coefficient of the "z" term, the mass would not necessarily

return to its equilibrium position (z = 0). Therefore, it is desirable

to modify Equation (36) to return the control mass to its zero position.

If the control law is chosen such that

f3 - p!ClZ - pz(c2 + W1 + W2 (39)
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the equation for the mass motion becomes

z + l + 2z = a12 b1 a31 -bw2 3 (40)

For this selection of control law

.2 Z'( 2 2 (41)
Trot =-1 lz - Izz(c2 + 1 +2 ). (41)

Here, the formulation departs from the Liapunov method since the

second term of Equation (41) is not negative semi-definite. Since

the first term will be decreasing the energy and the second term will

be oscillatory, increasing and decreasing the energy, and if the

c
1
and c2 are chosen properly the secular negative semi-definite

term will dominate. In the next section it will be shown that while

during a small part of the mass cycle T > 0, the T < 0 portion dominates

over the complete cycle. If every mass cycle has a net negative value

for T, the system will approach its minimum energy state and be in a

flat spin about the maximum moment of inertia axis. From Equation

(40), the mass will be back at its zero position.

IV. RESULTS

To demonstrate the feasibility of the movable mass control system

using the control law given by Equation (39), the Modular Space Station

(MSS) was chosen as an example vehicle. The properties of the MSS are

listed below.
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I
1
= 5,152,800 kgm (3,799,958 slug ft2 )

12 = 6,275,568 kgm2 (4,627,993 slug ft2 )

13 = 6,742,032 kgm2 (4,972,048 slug ft2 )

M = 99,792 kg (220,000 lb)

The weight of the control mass was arbitrarily chosen to be 0.1% of the

MSS mass.

m = 99.792 kg (220 lb)

The offset distances, (a) and (b), and the constants, (c1) and (c2 )

were arbitrarily chosen to be

a = 9.144 m (30 ft)

b = 9.144 m (30 ft)

c
1
= 1.0 sec 1

2 = 0.01 sec 2
2

The initial rotation rates were arbitrarily chosen to be

o1(0) = w2 (0) = 0.955 rpm

o3 (0) = 4.0 rpm

Using equations (15), (16), (17), and (40) with the above choice of

parameter values, the system of differential equations was solved using

a fourth order Runge-Kutta algorithm on the IBM 360 computer. The

results are shown in Figures 4 and 5.

Figure 4 shows the envelopes formed by the oscillations of the w's.

As can be seen from Figure 4, w1 and W2 oscillate with decreasing

amplitudes while w3 approaches its steady state spin value. The envelope

of oscillation of the control mass is shown in Figure 5. As can be
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seen from this figure, the control mass oscillates about its zero

position with decreasing amplitude which approaches zero. Thus, the

ability of the movable mass control system, using the control law

given by Equation (39), to reduce arbitrary tumbling to a simple spin

about the maximum moment of inertia axis has been demonstrated. From

the computer results, it was found that over a small portion of the

mass oscillation cycle the rate of change of rotational kinetic energy

was positive. Over the entire cycle, the negative contribution

dominates and results in a net decrease in kinetic energy. While the

maximum amplitude of the mass oscillation may be excessive for this

case (15m), the maximum amplitude may be adjusted by a proper choice

of the parameters c1 and c2.

The rate of change of kinetic energy is given by Equation (41)

which is repeated here

T = - PClZ -_zz(c
2 + w2 + 2) (41)

From Equation (41) it seems that for a large rate of change of kinetic

energy and, hence, fast approach to a simple spin, the parameter c1

should be chosen large and c2 should be chosen small. However, con-

sider the left hand side of Equation (40).

z + cz + c2z = F(w, w) (42)

Equation (42) may be thought of as the equation for the forced motion

of a spring-mass-damper system. In this analogy, c1 corresponds to

the damping constant of the damper and c2 corresponds to the spring
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constant. If c1 is chosen large as Equation (41) indicates, this

increases the damper strength and limits the velocity of the control

mass. Since the first term of Equation (41) is pc1z , an increase

in c
1
may result in a net decrease in the magnitude of this term.

Also, if c2 is chosen small as Equation (41) indicates, this decreases

the spring strength and increases the amplitude of oscillation of the

control mass. Thus, it can be seen that the parameters c
1

and c
2

must be chosen carefully, considering not only their effect on Equation

(41) but also their effect on Equation (42). Effort is being directed

towards finding an analytical method for choosing these parameters.

V. CONCLUSIONS

A movable mass control system to convert the tumbling motions

of a spacecraft into a simple spin has been studied. The equations

of motion of a rigid spacecraft with attached control mass have been

formulated and a control law has been selected. For an example,

spacecraft and initial conditions it has been shown that the movable

mass control system is capable of decreasing the kinetic energy of the

system to its minimum value and result in a simple spin about the

maximum moment of inertia axis within one hour. This control system

would become active upon loss of control. Future work will be directed

toward establishing control system sensors, power, and energy require-

ments. Also, work will be directed towards establishing analytical

methods for choosing control system parameters to obtain a control

system which operates within established limits of mass amplitude and

other constraints while still detumbling the spacecraft in a reasonable
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time. Also, methods of despinning the spacecraft after a simple spin

state is reached will be investigated as to their feasibility and

practicality.
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APPENDIX C

OPTIMIZATION OF MOVABLE MASS CONTROLS

I. INTRODUCTION

A general time history of internal control mass motion in a

tumbling space vehicle to achieve simple spin about an axis of the

body is not available. It would seem feasible to use optimization

techniques to solve the nonlinear differential equations with initial

and final conditions on the state variables. Time minimization was

initially attempted. However, the minimum time condition was being

o

satisfied at the cost of the mass position constraining penalty

function. The optimization was subsequently changed to minimization

of the mass position for a fixed time. This change yields better

results, but further work yet remains in order to obtain satisfactory

mass position time histories that convert tumbling to simple spin.

II. ANALYSIS

The vector equation of motion for a rigid body with internal

mass movement whose coordinate system is located at the center of

mass is

M =H + S x a

where

1MI = External moment

H = Angular momentum of the spacecraft including
the movable mass

S = First moment of mass of the system

a = Acceleration of the spacecraft center of mass
(not including the movable mass).
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Therefore, for no external torque, the equations governing the motion

of a spacecraft with a movable mass (along the x axis) for a body fixed,

spacecraft (less mass) center of mass located coordinate system are

V 1Z( X C M\31 X C, rl i 3cr\3 t Ct n Bz,+)
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The basic symbols used above are

= angular velocity about the x axis

xY = angular velocityabout the y axis

wz = angular velocity about the z axis

x = position of the movable mass from the center of
mass of the spacecraft (less this mass)

-dx/dt

= dx/dt

m = mass of movable body

M = mass of spacecraft less that of the movable mass

q 

Pz - X1 V
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y = position on y axis of the movable mass

z = position on z axis of the movable mass

Ix, Iy, I = moments of inertia

Iy, I, Iyz = products of inertia.

The equations of motion were put in a form necessary for the application

of optimization technqiues by substituting B for x and u for B and

adding two more first order differential equations

~=U

- = u.

The term u is now the control variable and Wx, Wy, Wz, x and B are

the state variables.

The solution of the five first order differential equations for

Wy(tb) and wz(tb) approaching zero (terminal conditions) was obtained

by minimizing the x position with a first order gradient method.

A first order gradient method must be used since the initial guess

of control histories may be far from the optimal. The parameter

to be optimized was written as

tb x 2 dt x dt.
t x
o max

III. RESULTS

The approach listed above was attempted for various postions

and movement axis of the mass. The best results for the space stationl as far as least

maximum mass position is concerned, were for the mass moving along
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the z axis of the NAR coordinate system and displaced +15 feet on NAR

y axis and -15 feet in the NAR x axis. This position of the mass

necessitates an external tube for the mass, but it provides for greater

maximum positions and greater displacement on all axes from the space

station center of mass. For initial angular velocities of Wx = .176

rad/sec, w = .097 rad/sec and w = .096 rad/sec (based on axis used in

equation derivation), the maximum position of a mass 1% the weight

of the space station required to reduce the angular velocity on the

y and z axes by 10% is over 400 ft. from the spacecraft center of mass;

but, the terminal time set was 35 sec. Indications of other digital

computer runs indicates that increasing the terminal time permits

lower maximum mass positions. The example mentioned above required

200 sec of computer time. However, setting a terminal time of 5 to 10

minutes, as seems necessary to keep the mass position small, necessitates

very large computer time.

IV. CONCLUSIONS

Minimizing mass position gave the best results to date. However,

the computer time that seems necessary to arrive at satisfactory results

will be very large. Attempts will be made to lower the computer time

needed to solve the equations of motion for fixed terminal time. Also,

the optimization techniques will be refined. The feasibility of using

a hybrid computer will be investigated. One of these approaches may

yield the tools needed to reduce tumbling to simple spin by using a

low weight movable mass moving inside the spacecraft.
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APPENDIX D

FLEXIBILITY ANALYSES AND SMIULATIONS

I. INTRODUCTION

Consider the possibility that a future manned space vehicle

assumed an uncontrollable, tumbling mode of motion. In order to

detumble the spacecraft to a state of simple spin about one axis,

a certain amount of energy must be extracted from the tumbling

craft. This appendix deals with an inherent source of energy

dissipation; the energy associated with the elastic deformation of

flexible appendages. Though the rate of energy dissipation due to

flexibility effects is small, its magnitude will be examined. The

effects of increasing the amount of flexibility, the number of

elastic appendages and the size of the flexible appendages on a

tumbling spacecraft is the primary consideration here. Future

spacecraft design should take into account the effect flexibility

has on control systems and overall spacecraft dynamics.

Many methods have been employed to study the motion of nonrigid

spacecraft. An extensive review of the techniques used in dealing

1
with flexibility has been previously completed. Reviewing the "state

of the art" of mathematical formulation of nonrigid spacecraft each

formulation would fall into one of three categories: (1) discrete

coordinate formulation; (2) vehicle normal-mode coordinate formulation;

and (3) hybrid-coordinate formulation. Each of these categories can

describe the mathematical analysis to be used when a spacecraft is
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modelled as one of the following: (1) a collection of rigid bodies;

(2) a quasi-rigid body; or (3) an elastic body.

Many spacecraft are simple in nature and they can be modelled

as a collection of rigid bodies. The motion of the spacecraft

would be described by a discrete-coordinate formulation. Since

relative motion between the rigid bodies takes place under general motion energy

dissipation from the system can be expected and is described either

by the use of the energy sink method or a damping factor associated

with a damping device. (e.g. a spring-mass damping mechanism). The

energy sink method assumes that a definite quantity of energy will

be dissipated from the system over a set interval of time in the

absence of external forces or torques on the system. This can be

done with good results whenever the rate of energy dissipation is

small. In the cases where elastic deformation of flexible appendages

are small, the energy sink method has been employed to describe the

energy dissipation due to the elastic deformations. The subsequent

analysis of the spacecraft attittude motion can then be accomplished.2

The discrete-parameter formulation of the spacecraft is still

the most accurate method. However, when the space vehicles become

large and more rigid bodies are needed to model it, this approach

becomes impractical from the computational point of view.

If the space vehicle were completely elastic (e.g. a slender

missile), a normal mode formation could be used. The vehicle normal

mode formulation was described in reference (1) and is not used in this

report.
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A space vehicle with flexible appendages can be modelled as a

quasi-rigid body. The mathematical formulation used to describe the

spacecrafts motion is a hybrid-ccordinate method. This method is

used in this report to analyze the effects of flexibility. The

hybrid-coordinate formulation combines the generality of the discrete-

coordinate approach and the computational advantages of modal coordinates.

By using the hybrid coordinate formulation, it is possible to describe

the rigid main body by discrete coordinates and the flexible motion

of the appendages by normal mode coordinates.3

Quasi-coodinates are quantities whose differentials may be

written as linear combinations of differentials of generalized

coordinates and time.4 Lagrange's equations of motion in terms of

quasi-coordinates are used to describe the motion of the whole vehicle.

The appendage's equations of motion are obtained from Lagrange's

formulation using generalized coordinates associated with the normal

mode method. This approach is still quite general in modelling

flexible appendages. Should the vehicle have internal damping

mechanisms or external torques, this approach will accommodate these

possibilities.. However, the present problem excludes all other

types of energy dissipation mechanisms except flexibility effects

and assumes no external torques are present. lThe tumbling space-

station will therefore be experiencing moment-free motion. The

generality of problem is increased by assuming an asymmetric main

body. The motion of a rigid asymmetric body under a moment-free

condition is mathematically described by eilliptical functions and
.,
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geometrically by a Poinsot ellipsoid rolling without slipping on an

invariable plane.2

The hybrid-coordinate formulation has the means of incorporating

damping.

Knowledge about how materials dissipates energy and provide

damping in dynamical systems is still incomplete. The mathematical

description of damping is only approximate at best. In the next

Section, a discussion of damping factors in elastic systems will be

presented. It will show how to incorporate a structural damping

factor into the hybrid coordinate formulation. The structural damping

factor can be and will be used in the Lagrangian formulation of the

flexible appendages. Structural damping will model the means by

which energy will be dissipated from the system. Due to this damping

term, the deflections of the appendages will decrease. This will

cause changes in the angular velocities about the three body axes of

the tumbling space vehicle. It is these changes which are being

investigated in this study.

Three configurations of a space station with flexible appendages

will be analyzed in this work. The first will be an asymmetric rigid

main body with four symmetrically placed beams about the axis of

greatest moment of inertia. (See Figure 1). The second will be an

asymmetric rigid body with three beams placed symmetrically about

the axis of greatest moment of inertia. Here, two beams are placed

along the axis of greatest moment of inertia. The third configuration

will be the NAR modular space station with the large solar arrays.
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The work that has been completed concerning these three con-

figurations will be presented in this report. Theory and background

material relevant to this study will also be given.

II. ENERGY DISSIPATION MODELLING

All realistic structures constitute a nonconservative system to

maintain a constant energy, an external source must supply energy to

the system at a rate equal to the rate of energy dissipation.

While mass and stiffness are inherent characteristics of a

system, damping or the forces which dissipates energy may not be

classified as such from the outset. Damping forces may depend

upon the vibrating system as well as on elements exterior to it.

The formulation of expressions for the damping forces poses a dif-

ficult problem that still requires extensive research. The nature

of damping is usually described as one of the following: a) structural

damping; b) viscous damping; c) coulomb damping.

Structural damping is due to the internal friction within the

material or at connections between elements of a structural system.

The resulting damping dorces are usually given as functions of strain,

amplitude of deflection, or frequency of vibration.

Viscous damping is the force which impedes vibrational motion

in a fluid. Viscous damping is expressed as; FD = c.u. in which

the constant c. characterizes the jth damping mechanism.
J
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Coulomb or dry-friction damping results from the motion of a

body on a dry surface. In a space vehicle structure, Coulomb damp-

ing is present in connections or joints where interfacial rubbing

dissipates energy. The resulting damping force is nearly constant.

It is expressed as: F
D
= pN; where P is the kinetic friction coefficient;

and N is the normal pressure force. Coulomb damping is ignored in the

present analysis since it is assumed that the elastic members (i.e.,

booms, solar arrays, etc.) of the space station are uniform and free

of interconnections.

Damping is considered to be rate-dependent (i.e., it depends

on the rate of a cyclic load amplitude and on the rate of the deflections).

Damping can be incorporated into a vibratory system by specifying a

value of the damping factor C. The use of viscous damping can be

used when the material exhibits nearly elastic behavior. This

usually occurs at low amplitudes of stress. For most spacecraft

applications, viscous damping can be assumed since deformations are

usually small.

In the field of vibrational analysis, it is general knowledge

that for lightly damped structures the natural frequencies and

mode shapes are largely independent of damping. The motion of an

elastic body analyzed under the assumptions of model analyses can

be found without considering the specific nature of the dissipation

mechanism.

Furthermore, the mode shapes of the elastic appendages can be

described accurately for all tumbling spacecraft using only the first
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few modes. These lower mode shapes will dominate the response of

spacecraft motion.

Observations show that the energy per cycle removed by structural

friction is roughly proportional to the square of the amplitude by

independent of frequency. This fact demonstrates a significant

difference from the simpler case of viscous friction. Consider a

simple periodic motion c = x sin wt which is opposed by a viscous

damping force F = -Cx =- cWx cos wt = + cw /- 2 2 where
D.V. o x - x

0

the sign is determined from the fact that FD.V. is always opposite

to the instantaneous velocity. The work per cycle,

ft=217/WL)

'a4D j t=O FD.V. dx,

done by FD.V. on the vibrational motion is the area inside the ellipse.

Since this diagram would have semiaxes cwx and x , the work per

cycle is proportional both to x and to w.

By contrast, a damping force which has the same effect as structural

friction would be

FD.V. = - gx cos Wt = + gV 2 2 .
D.V. o X -x

The work is again the area inside an ellipse, but the semiaxes are gx0

and x0. When encountered in cyclic motion of materials, such a force

is called hystersis. If one uses the complex representation of simple

harmonic motion, F D.Sbags the position vector by 90° and is therefore

given by - igx, where g is a small structural damping coefficient. One

might consider that structural damping is proportional in magnitude

to the elastic restoring forces FE and opposite in direction to the

velocity of oscillation.
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All representations of structural friction are empirical. The

primary purpose is that they provide a means of energy removal that

is correctly dependent on the amplitude and frequency.5 '

Energy dissipation is modelled as a complex damping term in the

equations derived in this appendix. This type of damping has yet to

be proven satisfactory for this study.

III. A SPACE STATION 1WITH FLEXIBLE BEAMS

An investigation of a tumbling space station with long, flexible

booms is presented in this Section. Equations of motion are presented

for two particular configurations of space stations.

The two most complex configurations that can be reasonably analyzed

by the hybrid-coordinate formulation are examined in this Section.

The first configuration is composed of an asymmetric rigid central

body and six beams of identical material and circular cross-section

as shown in Figure 1. The hody axes are OXYZ and the origin is at

the center of mass of the satellite. Since the deformations of the

beams are assumed small (% 10% of their length), the center of

mass is assumed fixed. In this space station configuration, the

three body axes are always parallel to a line tangent to the root

of the antennas. The axis OZ is the axis of greatest moment of

inertia; moreover I > I > I will be assumed.
z y x

The equations of motion will be derived using variational

principles of mechanics. It will be assumed that the orbital motion

of the satellite mass center is independent of the orientation of the

body, The kinetic energy is given by: T = V dm
m
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where V is the velocity of a mass point dm. The kinetic energy

expression of a tumbling spacecraft becomes:

yT '4 13 -M7. + C Z. - (1)

Fz 2 e - a W e i- EmQ

are components of the instantaneous moment of inertia tensor (cal-

culated with respect to the OXYZ axes). The quantity u is the

deformation referenced from the underformned state, M is the total

mass of the body, and Fx, ry, and F are components of angular

momentum due to deformation of the configuration. The total angular

momentum which remains constant throughout the analysis is

h = I * w + r (2)

where I is the inertia tensor of the deformed body and

r E (r x u) dm
m

is the angular momentum of deformation.

The mechanics of deformation of flexible appendages is first

examined. Consider a single beam along OX axis in the undeformed

state. Assume the beam is subject to small deflections in the y - and

z - direction. The moments and products of inertia are defined as:
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I (z2
in

Y m(

Iz= mf

+ y2) dm;

+ z2 )

I xy =% xy dm

dm; I = yz dm
Iy
z

(y2 + x
2
) din;

Ixz = xz dm
m

where m is the total mass of the beam. The beam of

shorten upon deformation, and will project a length

OX axes (See Figure 2) given by:

length Q will

OX1 along

1 =t tdy) + (-d-) } dx + H.O.T.
= -2 jo dx dx
X1 -R dr 0

The component, C, is expressed as

C = p (x2 + y2 ) ds

where p is the mass per unit length and ds is the differential element

of arc length. The expression for C can be written as:

C = pX1 (x2 + y2) [1 + 1 (y')2 + - (z')2 + H.O.T.] dx

(4)

(5)

(6)

where

ds = [1 + (y')2 4- (Z')2 1/ 2 dx = [1 + 1 (y')2 + - (z')2 + H.O.T.] dx2 2

has been substituted.

Upon integration C becomes:

{ .2x 2 2
g3 = P ii + Pf _ ( - x ) [(y,)2 + (Z,)2]} dx + H O..T (7)

C= p--+3{y 2

where the primes denote differentiation with respect to x.
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In a similar manner, the other components of the inertia tensor can be

computed. The remaining expressions in the kinetic energy aan be

found.

In each case, the body axis XYZ are assumed parallel to the principal

axes of the central body and to have an angular velocity w = (x' y', WZ).

The first configuration has six beams and there has been defined twelve

deformations, w (x,t), i - (1,...12) (see Figure 1).

'lhe deformation functions are from modal analysis and are given by:

co
i

= Z 9 qin (t) fin (%) (8)
n=l

where qin(t) is a dimensionless coordinate function of the ith beam

Zi ~in () are the normal mode shapes functions. Normally, the procedure

is to use the cantilever modes of vibration as computed from the cantilever

beam equation:

f 2 4

On"" () - in) E_= ° (9)

with n(0) = n(1) = n'' (1) = '''(1) = 0.

It is assumed that only the first mode shape will be excited. Higher

mode shapes corresponding to higher frequencies will be assumed to have

a negligible contribution in this analysis. It is therefore more

practical to use an approximate expression for the first cantilever

beam mode shape:

X.
I() = i - cos - C where 5 = 
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Greater refinements can be made, however, mathematical complications

will result. Certain corrections due to centrifugal stiffening effects

may be included, but such effects are negligible for first mode

8
approximations and intermediate values of angular velocities. The decoupling

of this problem through the use of antisymmetric and symmetric modes

of deformation is not considered. No decoupling techniques are used

in this analysis. The only assumption concerning the effect of the

deflections on the total vehicle is that the center of mass of the

configuration remain fixed. This assumption will be satisfied if the

weight ratio of the long, flexible beams to the rigid central body

is very small (i.e., on the order of 1:100).

Previously, the geneal kinetic energy expression was written.

The potential energy of the system is that due to strain energy of

the beams, i.e.,
12 1 Ik --2w

1U 2 =rZ 2 E Jo d2x (10)
i=l 

Gravitational potential energy is not included.

It is assumed that damping of each beam will be modelled as structural

damping given by complex notation:

D.S. E.R. ( + ig)

where
F.R = which are the elastic restoring

in forces in the equations of motion.

g =.damping factor

i = /--
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The equations of motion will be obtained from Lagrange's equations,

using the sets (Wx,Wy' z) and (qin) as generalized coordinates.

The coordinates x', ,y' W are quasi-.coordinates. The Lagrange's

equations are:

d K) - goz 2-

cl-,- W 

;-( T
4- CC 1J, (12a)

(12b)
Z- Ca

0Y Qi i X Q&.~-~--- A- .~' 
/Vz (12c)

where Nx, Ny , N are externally applied torques about the XYZ axes.

Assuming an uncontrollable tumbling body and no environmental torques;

Nx, Ny, N are zero.

Substitution of the kinetic energy expression into the Lagrange's

equations results in:

dt t~t Mx -. z- i,.
dit IX a), I 2C O/ iKE Xz C + (r,

I cO ZCoxK &y V Z Y 
/V X

Ly- z, z- . ,,e. ? .7 I (I - z.)4&7

(13)

, .~zdf (_= ) z 

I ,) 6vy tw yz(zZ _z ) .. ' I4 /_ ~d Z

' 2Jx z - z ) Z J Wk-
-lt5 6A4ji /Z9 M, K e lz r S

'- 'xy_C7T Y" 
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The expressions for the moments and products of inertia in terms

of generalized coordinates are:
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where I ' I ' I ' are the moments of inertia of the undeformed space-
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craft.
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The Lagrange's equations of motion for the appendages are:

aL
qin = 
qin

L = T-U U

qil = generalized coordinate for n =
i = 1,...12

The expression for the potential energy is:
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Knowing these expressions, the twelve equations of motion for the

flexible appendages can be written:
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Equations (13), together with Equations (14), (15), and (18) are

the motion equations for the space station. They will be integrated

numerically by digital computer under the assumption n = 1.

It must be stressed that the equations are valid only for small

deflection of the beams. The angular velocities (wx,Wy , ) need not

be small.

In the equations of motion for the appendages the damping factor

has been included.

In the last section of this report, there is a brief discussion

on the values of the constants and initial conditions that will be

used to initiate the solutions to these equations.

The next configuration of space craft to be considered is shown

in Figure 2. In this case, one of the radial appendages has been

removed and the remaining three are placed synmetrically about the

z-axis. The angle y is used to designate the angle between two

successive appendages and is found by dividing 3600 by the number of

appendages in x-y plane (in this case N = 3).

The development of the equations of motion for this configuration

follows the same procedure as used for configuration I. The moments

and products of inertia about each beam must be found about new axes

through and perpendicular to the beam and then rotated through the

angle y. These moments and products of inertia must then be sub-

stituted into the following transformation equations:
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where ai.. are direction cosines of axis i with respect to axis j.

The direction cosines for this problem are:

11 = cos y, a22 - sin y, l2 = a21 = sin y, and a3 1 = a23 = 0.

This means for a = 120° , all = -5, a2 2 -.866, 2 1 = l
2

.866.

The moments and products of inertias may be written:

I = 1 (I ) + 3 (I ) + .866 (I )
x 4 x1 2 3 1,2,3 YI,2,3

3 3 3

Y 4 X 1,2,3 4 Y1,2,3 2 xy1,2,3

I = remains the same as before as the z-axis was not rotated
z

3 1 1· 3
I = 31 )+ +Z 

'
/ (I ) + (I )

YxY =(4 + 4 ' IXY1,2,3 Y1,2,3

I and I do not change.
xz yz

where I = the moment of inertia about an x-axis through
X1,2,3 beams 1,2,3

It should be noted that there is one less beam to consider in

this configuration and new generalized coordinates are defined for this

case (see Figure 3).

The expression for the moments and products of inertia are:
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These expressions and substitutions of equations 13 and 18 will result

in the equations of motion for configuration II. The same type of

structural damping is inserted into these equations as before.

Approaching the problem through a study of just two configurations

does not impair the significance of the results. By changing the

constants and variables of these configurations a wide range of informa-

tion should become available.

The technique of obtaining a solution for these configurations

consisting of beams is hopefully going to lead to solving the rate

of energy dissipation occurring on the tumbling NAR modular space

station.

Information is being gathered as to the type of flexible appendages

that are attached to the NAR space station. Due to the knowledge

gained in analyzing the space stations with beams, the analysis of

NAR modular space station with large solar arrays will follow directly.

IV. DISCUSSION OF SIMULATION PARAMETERS

The last Section has shown that the equations of motion for the

two configurations of space stations with long, flexible beams contain

many constants which must be specified before computer simulation can

begin. In this Section, certain initial conditions, parameters, and

assumptions for this study which have been decided upon will be presented.

The two configurations of spacecraft are considered to be examples

of future space stations whose total mass are 100,000 kg. each (i.e.,

the same mass as the NAR modular space stations). Each configuration
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has an asymmetric, rigid, central body. Energy dissipation comes from

the flexure of elastic appendages which differ in number and size from

one configuration to the other.

The most important of the parameters are the moments and products

of inertia for each vehicle. The asymmetric rigid main body of each

configuration will be assumed to have identical moments and products

of inertia, that is:

I (Kg - m ) = 1.0 x 10

I " = 1.0 x 104

I " = 1.0 x 10
z

I , I, I =0
xy yx xz

Each configuration will have its own moment and products of inertia

depending on the number and size of the elastic appendages.

Each space station in this report contains elastic beams. For

initial considerations, each beam will have the same length and be

constructed from the same material. The booms will be 25 meters

long and be constructed of beryllium copper. Beryllium copper is

used to construct many antennas on space vehicles and has light-

weights and elastic characteristics. Its density (i.e., mass/length)

is .00197 Kg/m and its stiffness modulus, El, is 6.46 NT-m2 ,7

The weight ratio of the main central body with the long appendages is

of the order 1:1000. Consequently, it is reasonable to assume that

the mass center of the total vehicle does not change position with

time during small deformations.
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There is still work to be finished on the panel configuration and

no decision on the length or material of the panel has been made.

Parameters for this structure will be based on the final form of the

equations of motion, the method of solution, and the results obtained

from computer simulation of configurations I and II.

The most general type of passive attitude motion is considered

to be an initial premise to this study. Tumbling motion requires the

knowledge of three angular velocities: wx , WY, and w . Before

specifying their numerical values the natureal frequencies of the beams

were calculated. With the beams assumed to be uniform and cantilevered,

the natural frequencies are found from: on = (g)2 /-f;I- 4 . The

first two natural frequencies are 3.072 cpm and 19.258 cpm. It was

decided that only the first mode of vibration should be exicted in

this work so the angular velocities were chosen to be a reasonable

value of 6.00 rpm each.

The method of solution immediately follows upon knowing the

initial angular velocities. For example, in configuration I which has

six symmetrically placed beams, the approach to the solution would be

as follows: (1) substitute in known parameters (see Table I),

(2) set initial conditions, (3) substitute ox', oy, Wz into the three

satellite equations (4) solve for cox, Wo, Wz in terms of the q's,

(5) substitute Wox, y' ,oz just found in step (4) into the twelve

appendage equations, (6) solve for the q's, (7) knowing the deflections,

calculate the values of x', oy, Wz, (8) integrate c values to get the

new ox, coy' oz (9) repeat process.
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TABLE I

1 2 = 3 = ' 6 = 25 meters

P = .00197 Kg/m

EI = 6.46 NT-m2

Antenna material - BeCu

I = 1.0 x 10 Kg - m
x

I = 1.0 x 10

I = 1.0 x 105
z

I I ,I =0 Kg - m2
XY1 y2'zx

3 Kg-n2
I = 1.041 x 10 Kg - m
x

I = 1.004 x 104
y

I = 1.0 x 105
z

Ixy Iy' Iz Kg- m2zx

Total Mass = 100,000 Kg

M= 

Pl = .569

ell = 1.193

f. = 3.072 cpmin

Initial Conditions:

03 = 6.00 rpm

~0 = 6.00 rpm

wz = 6.00 rpm

qll' .'' q1 2 ' = 1

Main Body

Undeformed Total Body

Integrals in Equations for n = 1
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The stability characteristics of these parameters chosen here

will be substantiated or disproved through numerical simulation of the

nonlinear equations of motion of the two spacecraft configurations.

The presence of an energy dissipation term in the equations will model

the damping characteristics of the flexible appendages the rate at

which energy is dissipated due to the effects of flexibility will

be obtained.
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